翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cotes' spiral : ウィキペディア英語版
Cotes's spiral
In physics and in the mathematics of plane curves, Cotes's spiral (also written Cotes' spiral and Cotes spiral) is a spiral that is typically written in one of three forms
:
\frac = A \cos\left( k\theta + \varepsilon \right)

:
\frac = A \cosh\left( k\theta + \varepsilon \right)


:
\frac = A \theta + \varepsilon

where ''r'' and ''θ'' are the radius and azimuthal angle in a polar coordinate system, respectively, and ''A'', ''k'' and ''ε'' are arbitrary real number constants. These spirals are named after Roger Cotes. The first form corresponds to an epispiral, and the second to one of Poinsot's spirals; the third form corresponds to a ''hyperbolic spiral'', also known as a ''reciprocal spiral'', which is sometimes not counted as a Cotes's spiral.〔

The significance of Cotes's spirals for physics is in the field of classical mechanics. These spirals are the solutions for the motion of a particle moving under an inverse-cube central force, e.g.,
:
F(r) = \frac

where ''μ'' is any real number constant. A central force is one that depends only on the distance ''r'' between the moving particle and a point fixed in space, the center. In this case, the constant ''k'' of the spiral can be determined from μ and the areal velocity of the particle ''h'' by the formula
:
k^ = 1 - \frac

when ''μ'' < ''h'' 2 (cosine form of the spiral) and
:
k^ = \frac - 1

when ''μ'' > ''h'' 2 (hyperbolic cosine form of the spiral). When ''μ'' = ''h'' 2 exactly, the particle follows the third form of the spiral
:
\frac = A \theta + \varepsilon.

==See also==

* Archimedean spiral
* Hyperbolic spiral
* Newton's theorem of revolving orbits
* Bertrand's theorem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cotes's spiral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.